27 research outputs found

    Thinking Like A Scientist ... And An Engineer: Training future leaders and innovators in health care systems and delivery

    Get PDF
    Health care is increasingly becoming more complex with the advancement of accountable organizations, expansion of hospital systems, and major insurance and government reforms. As leaders of care teams, physicians are often expected to have a hybrid set of skills extending beyond clinical expertise. Examples of leadership knowledge and skill sets include organizational thinking, health quality improvement, health policy, financial literacy, health innovation, and many more. The number of MD/MBA programs has risen significantly since the 1990s and more recently, leadership pipelines for both medical residents and students have also emerged. These trends support a rising demand for well-rounded physician leaders. This project sets out to answer two questions: will a health care leadership program add value to undergraduate medical training for University of Massachusetts medical students? If so, what would such a leadership program look like? We used the Lean management framework and “A3” Plan Do Study Analyze cycle (PDSA) to identify the challenges and appropriateness of developing a leadership program, and then to highlight ideas for promoting leadership. Key components of the framework include a root cause analysis and development of counter measures. As a platform for analysis, we examined the experiences of the “Quality Improvement Health Care Elective,” a student led series of lectures on health care process, Lean management, and health care leadership. We tested our counter measures as well as other ideas in a student opinion survey that focused on level of interest in leadership, career aspirations, desired deliverables, and the option of a training certificate. An estimated 20% of the student population at UMass Medical School completed our survey (n=125). Our study discovered strong interest in the topic of leadership, with 20% of students stating they are very likely to take an elective on leadership, and 54% somewhat likely. Students were especially interested in career aspirations that included management and administration responsibilities, general career exploration, and opportunities for mentorship. These findings can be core features of developing a health care leadership option for medical students at UMass Medical School.https://escholarship.umassmed.edu/capstones/1002/thumbnail.jp

    A Theory of Clinic-EHR Affordance Actualization

    Get PDF
    To build theory about how to achieve expected benefits from a system implementation, we conducted a longitudinal study of the implementation of an electronic health record (EHR) system at a multi-site clinic using grounded theory methods and a critical realist perspective. We developed a mid-level process theory of how clinics actualize affordances arising from the implementation of an EHR. In so doing we complement the work of Markus and Silver (2008) in their application of Gibson’s Affordance Theory to the understanding of IT effects on organizations. Specifically, we replace the DeSanctis and Poole (1994) concept of appropriation with a new concept, actualization, and show how the individual level journeys of users as they actualize affordances as perceived from their various personal perspectives result in the organizational level outcomes. In building this mid-level theory, we identify the central affordances pertaining to the clinic-EHR relation and in so doing, provide an example of how to define affordances and how to conduct empirical studies using an Affordance Theory lens. Our theory should prove useful to practitioners implementing such systems

    A Theory of Organization-EHR Affordance Actualization

    Get PDF
    While organizations implement information technology (IT) to effect change, current theories of IT-associated organizational change pay insufficient attention to the change goals, the role of IT in organizational change, and the multilevel nature of change processes. We take a fresh look at IT-associated organizational change using grounded theory methods. Our longitudinal study of an electronic health record (EHR) system implementation in a multi-site medical group found user behaviors that did not fit well with existing theories. Instead, we found that they fit better with the concept of affordances from ecological psychology. In developing our affordance-based theory of IT-associated organizational change from our field data, we discovered three gaps in the affordance literature; namely, the lack of theory for (1) the process of actualizing an affordance’s potential, (2) affordances in an organizational context, and (3) bundles of interrelated affordances. This paper extends the theory of affordances to handle these three gaps and, in doing so, develops a mid-range theory for EHR-associated organizational change in a healthcare organization. While the resulting theory is specific to EHR implementations, it offers a template for other mid-range affordance-actualization theories and a more general affordance-actualization lens. Our affordance-actualization lens considers the materiality of the IT artifact, the non-deterministic process by which IT leads to organizational effects, the multilevel nature of IT-associated change processes, and the intentionality of managers and users as agents of change, and thus addresses important criteria for theories of IT effects in organizations. The paper also provides practical guidance for implementing EHR systems and other organizational systems

    Does Diving Limit Brain Size in Cetaceans?

    Get PDF
    We test the longstanding hypothesis, known as the dive constraint hypothesis, that the oxygenation demands of diving pose a constraint on aquatic mammal brain size.Using a sample of 23 cetacean species we examine the relationship among six different measures of relative brain size, body size, and maximum diving duration. Unlike previous tests we include body size as a covariate and perform independent contrast analyses to control for phylogeny. We show that diving does not limit brain size in cetaceans and therefore provide no support for the dive constraint hypothesis. Instead, body size is the main predictor of maximum diving duration in cetaceans. Furthermore, our findings show that it is important to conduct robust tests of evolutionary hypotheses by employing a variety of measures of the dependent variable, in this case, relative brain size

    Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow lesions (BMLs), common osteoarthritis-related magnetic resonance imaging findings, are associated with osteoarthritis progression and pain. However, there are no articles describing the use of 3-dimensional quantitative assessments to explore the longitudinal relationship between BMLs and hyaline cartilage loss. The purpose of this study was to assess the cross-sectional and longitudinal descriptive characteristics of BMLs with a simple measurement of approximate BML volume, and describe the cross-sectional and longitudinal relationships between BML size and the extent of hyaline cartilage damage.</p> <p>Methods</p> <p>107 participants with baseline and 24-month follow-up magnetic resonance images from a clinical trial were included with symptomatic knee osteoarthritis. An 'index' compartment was identified for each knee defined as the tibiofemoral compartment with greater disease severity. Subsequently, each knee was evaluated in four regions: index femur, index tibia, non-index femur, and non-index tibia. Approximate BML volume, the product of three linear measurements, was calculated for each BML within a region. Cartilage parameters in the index tibia and femur were measured based on manual segmentation.</p> <p>Results</p> <p>BML volume changes by region were: index femur (median [95% confidence interval of the median]) 0.1 cm<sup>3 </sup>(-0.5 to 0.9 cm<sup>3</sup>), index tibia 0.5 cm<sup>3 </sup>(-0.3 to 1.7 cm<sup>3</sup>), non-index femur 0.4 cm<sup>3 </sup>(-0.2 to 1.6 cm<sup>3</sup>), and non-index tibia 0.2 cm<sup>3 </sup>(-0.1 to 1.2 cm<sup>3</sup>). Among 44 knees with full thickness cartilage loss, baseline tibia BML volume correlated with baseline tibia full thickness cartilage lesion area (<it>r </it>= 0.63, <it>p</it>< 0.002) and baseline femur BML volume with longitudinal change in femoral full thickness cartilage lesion area (<it>r </it>= 0.48 <it>p</it>< 0.002).</p> <p>Conclusions</p> <p>Many regions had no or small longitudinal changes in approximate BML volume but some knees experienced large changes. Baseline BML size was associated to longitudinal changes in area of full thickness cartilage loss.</p

    c-Rel Deficiency Increases Caspase-4 Expression and Leads to ER Stress and Necrosis in EBV-Transformed Cells

    Get PDF
    LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Composite model for profiling physicians across domains of care

    No full text
    Physician profiling methods are envisioned as a means of promoting healthcare quality by recognizing the contributions of individual physicians. Developing methods that can reliably distinguish among physicians\u27 performance is challenging because of small sample sizes, incomplete data, and physician panel differences. In this study, we developed a hierarchical, weighted composite model to reliably compare primary care physicians across domains of care, and we demonstrated its use within a clinical system. We evaluated 199 primary care physicians from a large integrated healthcare delivery system using 19 quality and two efficiency measures taken from the Healthcare Effectiveness Data and Information Set and existing pay-for-performance programs. Individual measures were calculated, compared to benchmarks, and grouped into two composites: one focused on quality and one on efficiency. Each composite was fitted to the model, assessed for reliability (signal-to-noise ratio), and weighted to create a single summary score for each primary care physician. The quality-of-care composite had a median reliability of .98, with 99.5% of all physician reliability estimates exceeding threshold. The efficiency composite had a median reliability of .97, with 94.9% of all physician reliability estimates exceeding threshold. Our results demonstrate that reliable physician profiling is possible across care domains using a hierarchical composite model based on multiple data. The model was used to distribute incentive payouts among primary care physicians but is adaptable to many settings

    Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data

    No full text
    Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed.Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool.Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years).Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics
    corecore